Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587282

RESUMO

OBJECTIVE: Recent studies have identified brain somatic variants as a cause of focal epilepsy. These studies relied on resected tissue from epilepsy surgery, which is not available in most patients. The use of trace tissue adherent to depth electrodes used for stereo electroencephalography (EEG) has been proposed as an alternative but is hampered by the low cell quality and contamination by nonbrain cells. Here, we use our improved depth electrode harvesting technique that purifies neuronal nuclei to achieve molecular diagnosis in a patient with focal cortical dysplasia (FCD). METHODS: Depth electrode tips were collected, pooled by brain region and seizure onset zone, and nuclei were isolated and sorted using fluorescence-activated nuclei sorting (FANS). Somatic DNA was amplified from neuronal and astrocyte nuclei using primary template amplification followed by exome sequencing of neuronal DNA from the affected pool, unaffected pool, and saliva. The identified variant was validated using droplet digital polymerase chain reaction (PCR). RESULTS: An 11-year-old male with drug-resistant genetic-structural epilepsy due to left anterior insula FCD had seizures from age 3 years. Stereo EEG confirmed seizure onset in the left anterior insula. The two anterior insula electrodes were combined as the affected pool and three frontal electrodes as the unaffected pool. FANS isolated 140 neuronal nuclei from the affected and 245 neuronal nuclei from the unaffected pool. A novel somatic missense MTOR variant (p.Leu489Met, CADD score 23.7) was identified in the affected neuronal sample. Droplet digital PCR confirmed a mosaic gradient (variant allele frequency = .78% in affected neuronal sample; variant was absent in all other samples). SIGNIFICANCE: Our findings confirm that harvesting neuronal DNA from depth electrodes followed by molecular analysis to identify brain somatic variants is feasible. Our novel method represents a significant improvement compared to the previous method by focusing the analysis on high-quality cells of the cell type of interest.

2.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253421

RESUMO

Despite the advances in high-throughput sequencing, many rare disease patients remain undiagnosed. In particular, the patients with well-defined clinical phenotypes and established clinical diagnosis, yet missing or partial genetic diagnosis, may hold a clue to more complex genetic mechanisms of a disease that could be missed by available clinical tests. Here, we report a patient with a clinical diagnosis of Tuberous sclerosis, combined with unusual secondary features, but negative clinical tests including TSC1 and TSC2 Short-read whole-genome sequencing combined with advanced bioinformatics analyses were successful in uncovering a de novo pericentric 87-Mb inversion with breakpoints in TSC2 and ANKRD11, which explains the TSC clinical diagnosis, and confirms a second underlying monogenic disorder, KBG syndrome. Our findings illustrate how complex variants, such as large inversions, may be missed by clinical tests and further highlight the importance of well-defined clinical diagnoses in uncovering complex molecular mechanisms of a disease, such as complex variants and "double trouble" effects.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Facies
3.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37585487

RESUMO

Genetic modifiers are variants modulating phenotypic outcomes of a primary detrimental variant. They contribute to rare diseases phenotypic variability, but their identification is challenging. Genetic screening with model organisms is a widely used method for demystifying genetic modifiers. Forward genetics screening followed by whole genome sequencing allows the detection of variants throughout the genome but typically produces thousands of candidate variants making the interpretation and prioritization process very time-consuming and tedious. Despite whole genome sequencing is more time and cost-efficient, usage of computational pipelines specific to modifier identification remains a challenge for biological-experiment-focused laboratories doing research with model organisms. To facilitate a broader implementation of whole genome sequencing in genetic screens, we have developed Model Organism Modifier or MOM, a pipeline as a user-friendly Galaxy workflow. Model Organism Modifier analyses raw short-read whole genome sequencing data and implements tailored filtering to provide a Candidate Variant List short enough to be further manually curated. We provide a detailed tutorial to run the Galaxy workflow Model Organism Modifier and guidelines to manually curate the Candidate Variant Lists. We have tested Model Organism Modifier on published and validated Caenorhabditis elegans modifiers screening datasets. As whole genome sequencing facilitates high-throughput identification of genetic modifiers in model organisms, Model Organism Modifier provides a user-friendly solution to implement the bioinformatics analysis of the short-read datasets in laboratories without expertise or support in Bioinformatics.


Assuntos
Caenorhabditis elegans , Genoma , Animais , Caenorhabditis elegans/genética , Fluxo de Trabalho , Mapeamento Cromossômico , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software
4.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37313226

RESUMO

Balancers are primarily chromosomal rearrangements that allow lethal or sterile mutations to be stably maintained as heterozygotes. Strains with balanced lethal/sterile mutations are available at the Caenorhabditis Genetics Center. Such strains harbor morphological markers, with associated molecular changes, that are in trans to the balancer. In many cases, only the genetic position (in cM) has been described for balanced mutations or morphological markers. We used short-read whole genome sequencing to uncover the genomic position of those variants (balanced mutations and linked markers) and predicted their effect. We investigated 12 different strains, and characterized at a molecular level 12 variants.

5.
Neuro Oncol ; 25(10): 1763-1774, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37186014

RESUMO

BACKGROUND: Chromosome instability (CIN) with recurrent copy number alterations is a feature of many solid tumors, including glioblastoma (GBM), yet the genes that regulate cell division are rarely mutated in cancers. Here, we show that the brain-abundant mitogen, platelet-derived growth factor-A (PDGFA) fails to induce the expression of kinetochore and spindle assembly checkpoint genes leading to defective mitosis in neural progenitor cells (NPCs). METHODS: Using a recently reported in vitro model of the initiation of high-grade gliomas from murine NPCs, we investigated the immediate effects of PDGFA exposure on the nuclear and mitotic phenotypes and patterns of gene and protein expression in NPCs, a putative GBM cell of origin. RESULTS: NPCs divided abnormally in defined media containing PDGFA with P53-dependent effects. In wild-type cells, defective mitosis was associated with P53 activation and cell death, but in some null cells, defective mitosis was tolerated. Surviving cells had unstable genomes and proliferated in the presence of PDGFA accumulating random and clonal chromosomal rearrangements. The outcome of this process was a population of tumorigenic NPCs with recurrent gains and losses of chromosomal regions that were syntenic to those recurrently gained and lost in human GBM. By stimulating proliferation without setting the stage for successful mitosis, PDGFA-transformed NPCs lacking P53 function. CONCLUSIONS: Our work describes a mechanism of transformation of NPCs by a brain-associated mitogen, raising the possibility that the unique genomic architecture of GBM is an adaptation to defective mitosis that ensures the survival of affected cells.


Assuntos
Glioblastoma , Células-Tronco Neurais , Humanos , Animais , Camundongos , Mitógenos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mitose , Células-Tronco Neurais/patologia , Glioblastoma/patologia
6.
Epilepsia Open ; 8(2): 659-665, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36740228

RESUMO

Familial adult myoclonic epilepsy (FAME) is an adult-onset neurological disease characterized by cortical tremor, myoclonus, and seizures due to a pentanucleotide repeat expansion: a combination of pathogenic TTTCA expansion associated with a TTTTA repeat in introns of six different genes. Repeat-primed PCR (RP-PCR) is an inexpensive test for expansions at known loci. The analysis of the SAMD12 locus revealed that the repeats have different size, configuration, and composition. The TTTCA repeats can be very long (>1000 repeats) but also very short (14 being the shortest identified). Here, we report siblings of European descent with the clinical diagnosis of FAME yet a negative RP-PCR test. Using short-read genome sequencing, we identified the pentanucleotide expansion in intron 4 of SAMD12, which was confirmed by CRIPSR-Cas9-mediated enrichment and long-read sequencing to be of (TTTTA)~879 (TTTCA)3 (TTTTA)7 (TTTCA)7 configuration. Our finding is the first to associate the SAMD12 locus in European patients with FAME and currently represents the shortest identified TTTCA expansion. Our results suggest that the SAMD12 locus should be tested in patients with suspected FAME independent of ethnicity. Furthermore, RP-PCR may miss the underlying mutation, and genome sequencing may be needed to confirm the pathogenic repeat.


Assuntos
Epilepsias Mioclônicas , Adulto , Humanos , Linhagem , Epilepsias Mioclônicas/genética , Repetições de Microssatélites , Genômica
7.
Genes (Basel) ; 14(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36672937

RESUMO

Complex genetic disease mechanisms, such as structural or non-coding variants, currently pose a substantial difficulty in frontline diagnostic tests. They thus may account for most unsolved rare disease patients regardless of the clinical phenotype. However, the clinical diagnosis can narrow the genetic focus to just a couple of genes for patients with well-established syndromes defined by prominent physical and/or unique biochemical phenotypes, allowing deeper analyses to consider complex genetic origin. Then, clinical-diagnosis-driven genome sequencing strategies may expedite the development of testing and analytical methods to account for complex disease mechanisms as well as to advance functional assays for the confirmation of complex variants, clinical management, and the development of new therapies.


Assuntos
Variação Genética , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Fenótipo , Mapeamento Cromossômico
8.
Genome Res ; 33(1): 154-167, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36617680

RESUMO

Genetic balancers in Caenorhabditis elegans are complex variants that allow lethal or sterile mutations to be stably maintained in a heterozygous state by suppressing crossover events. Balancers constitute an invaluable tool in the C. elegans scientific community and have been widely used for decades. The first/traditional balancers were created by applying X-rays, UV, or gamma radiation on C. elegans strains, generating random genomic rearrangements. Their structures have been mostly explored with low-resolution genetic techniques (e.g., fluorescence in situ hybridization or PCR), before genomic mapping and molecular characterization through sequencing became feasible. As a result, the precise nature of most chromosomal rearrangements remains unknown, whereas, more recently, balancers have been engineered using the CRISPR-Cas9 technique for which the structure of the chromosomal rearrangement has been predesigned. Using short-read whole-genome sequencing (srWGS) and tailored bioinformatic analyses, we previously interpreted the structure of four chromosomal balancers randomly created by mutagenesis processes. Here, we have extended our analyses to five CRISPR-Cas9 balancers and 17 additional traditional balancing rearrangements. We detected and experimentally validated their breakpoints and have interpreted the balancer structures. Many of the balancers were found to be more intricate than previously described, being composed of complex genomic rearrangements (CGRs) such as chromoanagenesis-like events. Furthermore, srWGS revealed additional structural variants and CGRs not known to be part of the balancer genomes. Altogether, our study provides a comprehensive resource of complex genomic variations in C. elegans and highlights the power of srWGS to study the complexity of genomes by applying tailored analyses.


Assuntos
Caenorhabditis elegans , Cromossomos , Animais , Caenorhabditis elegans/genética , Hibridização in Situ Fluorescente , Mutação , Genômica
9.
Front Genet ; 13: 815210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145552

RESUMO

Ataxia-telangiectasia (AT) is a complex neurodegenerative disease with an increased risk for bone marrow failure and malignancy. AT is caused by biallelic loss of function variants in ATM, which encodes a phosphatidylinositol 3-kinase that responds to DNA damage. Herein, we report a child with progressive ataxia, chorea, and genome instability, highly suggestive of AT. The clinical ataxia gene panel identified a maternal heterozygous synonymous variant (NM_000051.3: c.2250G > A), previously described to result in exon 14 skipping. Subsequently, trio genome sequencing led to the identification of a novel deep intronic variant [NG_009830.1(NM_000051.3): c.1803-270T > G] inherited from the father. Transcript analyses revealed that c.1803-270T > G results in aberrant inclusion of 56 base pairs of intron 11. In silico tests predicted a premature stop codon as a consequence, suggesting non-functional ATM; and DNA repair analyses confirmed functional loss of ATM. Our findings highlight the power of genome sequencing, considering deep intronic variants in undiagnosed rare disease patients.

10.
Orphanet J Rare Dis ; 17(1): 76, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193637

RESUMO

BACKGROUND: The diagnostic journey for many rare disease patients remains challenging despite use of latest genetic technological advancements. We hypothesize that some patients remain undiagnosed due to more complex diagnostic scenarios that are currently not considered in genome analysis pipelines. To better understand this, we characterized the rare disorder (RD) spectrum using various bioinformatics resources (e.g., Orphanet/Orphadata, Human Phenotype Ontology, Reactome pathways) combined with custom-made R scripts. RESULTS: Our in silico characterization led to identification of 145 borderline-common, 412 rare and 2967 ultra-rare disorders. Based on these findings and point prevalence, we would expect that approximately 6.53%, 0.34%, and 0.30% of individuals in a randomly selected population have a borderline-common, rare, and ultra-rare disorder, respectively (equaling to 1 RD patient in 14 people). Importantly, our analyses revealed that (1) a higher proportion of borderline-common disorders were caused by multiple gene defects and/or other factors compared with the rare and ultra-rare disorders, (2) the phenotypic expressivity was more variable for the borderline-common disorders than for the rarer disorders, and (3) unique clinical characteristics were observed across the disorder categories forming the spectrum. CONCLUSIONS: Recognizing that RD patients who remain unsolved even after genome sequencing might belong to the more common end of the RD spectrum support the usage of computational pipelines that account for more complex genetic and phenotypic scenarios.


Assuntos
Síndrome de DiGeorge , Doenças Raras , Biologia Computacional , Humanos , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/genética
11.
BMC Genomics ; 22(1): 820, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34773966

RESUMO

BACKGROUND: Intragenic modifiers (in-phase, second-site variants) are known to have dramatic effects on clinical outcomes, affecting disease attributes such as severity or age of onset. However, despite their clinical importance, the focus of many genetic screens in model systems is on the discovery of extragenic variants, with many labs still relying upon more traditional methods to identify modifiers. However, traditional methods such as PCR and Sanger sequencing can be time-intensive and do not permit a thorough understanding of the intragenic modifier effects in the context of non-isogenic genomic backgrounds. RESULTS: Here, we apply high throughput approaches to identify and understand intragenic modifiers using Caenorhabditis elegans. Specifically, we applied whole genome sequencing (WGS) to a mutagen-induced forward genetic screen to identify intragenic suppressors of a temperature-sensitive zyg-1(it25) allele in C. elegans. ZYG-1 is a polo kinase that is important for centriole function and cell divisions, and mutations that truncate its human orthologue, PLK4, have been associated with microcephaly. Combining WGS and CRISPR/Cas9, we rapidly identify intragenic modifiers, show that these variants are distributed non-randomly throughout zyg-1 and that genomic context plays an important role on phenotypic outcomes. CONCLUSIONS: Ultimately, our work shows that WGS facilitates high-throughput identification of intragenic modifiers in clinically relevant genes by reducing hands-on research time and overall costs and by allowing thorough understanding of the intragenic phenotypic effects in the context of different genetic backgrounds.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Alelos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Mutação , Proteínas Quinases/genética , Sequenciamento Completo do Genoma
12.
Sci Rep ; 11(1): 18258, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521941

RESUMO

Genomic rearrangements cause congenital disorders, cancer, and complex diseases in human. Yet, they are still understudied in rare diseases because their detection is challenging, despite the advent of whole genome sequencing (WGS) technologies. Short-read (srWGS) and long-read WGS approaches are regularly compared, and the latter is commonly recommended in studies focusing on genomic rearrangements. However, srWGS is currently the most economical, accurate, and widely supported technology. In Caenorhabditis elegans (C. elegans), such variants, induced by various mutagenesis processes, have been used for decades to balance large genomic regions by preventing chromosomal crossover events and allowing the maintenance of lethal mutations. Interestingly, those chromosomal rearrangements have rarely been characterized on a molecular level. To evaluate the ability of srWGS to detect various types of complex genomic rearrangements, we sequenced three balancer strains using short-read Illumina technology. As we experimentally validated the breakpoints uncovered by srWGS, we showed that, by combining several types of analyses, srWGS enables the detection of a reciprocal translocation (eT1), a free duplication (sDp3), a large deletion (sC4), and chromoanagenesis events. Thus, applying srWGS to decipher real complex genomic rearrangements in model organisms may help designing efficient bioinformatics pipelines with systematic detection of complex rearrangements in human genomes.


Assuntos
Caenorhabditis elegans/genética , Rearranjo Gênico/genética , Sequenciamento Completo do Genoma/métodos , Animais , Troca Genética/genética , Variações do Número de Cópias de DNA/genética , Duplicação Gênica/genética , Genoma Helmíntico/genética , Heterozigoto , Homozigoto , Mutagênese/genética
13.
Genet Sel Evol ; 53(1): 24, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33731010

RESUMO

BACKGROUND: The impact of individual genetic and genomic variations on immune responses is an emerging lever investigated in vaccination strategies. In our study, we used genetic and pre-vaccination blood transcriptomic data to study vaccine effectiveness in pigs. RESULTS: A cohort of 182 Large White pigs was vaccinated against Mycoplasma hyopneumoniae (M. hyo) at weaning (28 days of age), with a booster 21 days later. Vaccine response was assessed by measuring seric M. hyo antibodies (Ab) at 0 (vaccination day), 21 (booster day), 28, 35, and 118 days post-vaccination (dpv). Inter-individual variability of M. hyo Ab levels was observed at all time points and the corresponding heritabilities ranged from 0.46 to 0.57. Ab persistence was higher in females than in males. Genome-wide association studies with a 658 K SNP panel revealed two genomic regions associated with variations of M. hyo Ab levels at 21 dpv at positions where immunity-related genes have been mapped, DAB2IP on chromosome 1, and ASAP1, CYRIB and GSDMC on chromosome 4. We studied covariations of Ab responses with the pre-vaccination blood transcriptome obtained by RNA-Seq for a subset of 82 pigs. Weighted gene correlation network and differential expression analyses between pigs that differed in Ab responses highlighted biological functions that were enriched in heme biosynthesis and platelet activation for low response at 21 dpv, innate antiviral immunity and dendritic cells for high response at 28 and 35 dpv, and cell adhesion and extracellular matrix for high response at 118 dpv. Sparse partial least squares discriminant analysis identified 101 genes that efficiently predicted divergent responders at all time points. We found weak negative correlations of M. hyo Ab levels with body weight traits, which revealed a trade-off that needs to be further explored. CONCLUSIONS: We confirmed the influence of the host genetics on vaccine effectiveness to M. hyo and provided evidence that the pre-vaccination blood transcriptome co-varies with the Ab response. Our results highlight that both genetic markers and blood biomarkers could be used as potential predictors of vaccine response levels and more studies are required to assess whether they can be exploited in breeding programs.


Assuntos
Imunogenicidade da Vacina , Pneumonia Suína Micoplasmática/genética , Polimorfismo de Nucleotídeo Único , Suínos/genética , Transcriptoma , Animais , Anticorpos/sangue , Anticorpos/genética , Anticorpos/imunologia , Feminino , Heme/metabolismo , Imunidade Inata , Masculino , Mycoplasma hyopneumoniae/imunologia , Ativação Plaquetária , Pneumonia Suína Micoplasmática/imunologia , Pneumonia Suína Micoplasmática/prevenção & controle , Suínos/imunologia , Vacinação/veterinária
14.
Genes (Basel) ; 10(4)2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987386

RESUMO

The problem of 'missing heritability' affects both common and rare diseases hindering: discovery, diagnosis, and patient care. The 'missing heritability' concept has been mainly associated with common and complex diseases where promising modern technological advances, like genome-wide association studies (GWAS), were unable to uncover the complete genetic mechanism of the disease/trait. Although rare diseases (RDs) have low prevalence individually, collectively they are common. Furthermore, multi-level genetic and phenotypic complexity when combined with the individual rarity of these conditions poses an important challenge in the quest to identify causative genetic changes in RD patients. In recent years, high throughput sequencing has accelerated discovery and diagnosis in RDs. However, despite the several-fold increase (from ~10% using traditional to ~40% using genome-wide genetic testing) in finding genetic causes of these diseases in RD patients, as is the case in common diseases-the majority of RDs are also facing the 'missing heritability' problem. This review outlines the key role of high throughput sequencing in uncovering genetics behind RDs, with a particular focus on genome sequencing. We review current advances and challenges of sequencing technologies, bioinformatics approaches, and resources.


Assuntos
Predisposição Genética para Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Raras/genética , Biologia Computacional/métodos , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Fenótipo
15.
Sci Rep ; 9(1): 3160, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816147

RESUMO

Host miRNAs are known to modulate the cell response to virus infections. We characterized the miRNA-targeted transcriptome of porcine alveolar macrophages (PAMs) at early times after infection with a subtype 1.1 strain of PRRSV (Porcine Reproductive and Respiratory Syndrome Virus). We performed the immunoprecipitation of RISC (RNA-induced Silencing Complex) followed by microarray analysis of the RISC-bound miRNA targets (RIP-Chip) to evaluate the relative enrichment or depletion of expressed genes in RISC. The miRNA-mediated regulation occurred early after PRRSV infection and decreased fast (1,241 and 141 RISC-bound genes at 7 h and 10 h post-infection, respectively); it affected several cell functions with evidence of miRNA buffering of upregulated interferon-related genes. Eight miRNAs were highly enriched in RISC of both control and infected cells with no evidence of differential expression. Although miR-335-5p was the miRNA with most predicted targets among enriched RISC-bound genes, no effects on surface markers, cytokine expression and PRRSV replication were detected upon miR-335-5p mimics of primary PAMs. Our results do not point to specific miRNA-driven mechanisms regulating the early response to infection with this PRRSV 1.1 strain and indicate that the miRNome expressed by steady-state PAMs reacts promptly to counterbalance PRRSV infection by a pervasive modulation of host functions.


Assuntos
MicroRNAs/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Transcriptoma/genética , Animais , Regulação da Expressão Gênica/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , MicroRNAs/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos , Síndrome Respiratória e Reprodutiva Suína/patologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Transdução de Sinais/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...